Visualization of Eukaryotic DNA Mismatch Repair Reveals Distinct Recognition and Repair Intermediates

نویسندگان

  • Hans Hombauer
  • Christopher S. Campbell
  • Catherine E. Smith
  • Arshad Desai
  • Richard D. Kolodner
چکیده

DNA mismatch repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae, mispairs are primarily detected by the Msh2-Msh6 complex and corrected following recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. We found that the Msh2-Msh6 complex is an S phase component of replication centers independent of mispaired bases; this localized pool accounted for 10%-15% of MMR in wild-type cells but was essential for MMR in the absence of Exo1. Unexpectedly, Mlh1-Pms1 formed nuclear foci that, although dependent on Msh2-Msh6 for formation, rarely colocalized with Msh2-Msh6 replication-associated foci. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These findings suggest the presence of replication machinery-coupled and -independent pathways for mispair recognition by Msh2-Msh6, which direct formation of superstoichiometric Mlh1-Pms1 foci that represent sites of active MMR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human DNA mismatch repair: coupling of mismatch recognition to strand-specific excision

Eukaryotic mismatch-repair (MMR) proteins MutSalpha and MutLalpha couple recognition of base mismatches to strand-specific excision, initiated in vivo at growing 3' ends and 5' Okazaki-fragment ends or, in human nuclear extracts, at nicks in exogenous circular substrates. We addressed five biochemical questions relevant to coupling models. Excision remained fully efficient at DNA:MutSalpha rati...

متن کامل

The Eukaryotic Mismatch Recognition Complexes Track with the Replisome during DNA Synthesis

During replication, mismatch repair proteins recognize and repair mispaired bases that escape the proofreading activity of DNA polymerase. In this work, we tested the model that the eukaryotic mismatch recognition complex tracks with the advancing replisome. Using yeast, we examined the dynamics during replication of the leading strand polymerase Polε using Pol2 and the eukaryotic mismatch reco...

متن کامل

Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair and nonhomologous tail removal.

The Saccharomyces cerevisiae mismatch repair (MMR) protein MSH6 and the SGS1 helicase were recently shown to play similarly important roles in preventing recombination between divergent DNA sequences in a single-strand annealing (SSA) assay. In contrast, MMR factors such as Mlh1p, Pms1p, and Exo1p were shown to not be required or to play only minimal roles. In this study we tested mutations tha...

متن کامل

Biochemistry and genetics of eukaryotic mismatch repair.

The process of mismatch repair was first postulated to explain the results of experiments on genetic recombination and bacterial mutagenesis. Mismatch repair has long been known to play a major role in two cellular processes: (1) the repair of errors made during DNA replication or as the result of some types of chemical damage to DNA and DNA precursors; and (2) the processing of recombination i...

متن کامل

Spontaneous frameshift mutations in Saccharomyces cerevisiae: accumulation during DNA replication and removal by proofreading and mismatch repair activities.

The accumulation of frameshift mutations during DNA synthesis is determined by the rate at which frameshift intermediates are generated during DNA polymerization and the efficiency with which frameshift intermediates are removed by DNA polymerase-associated exonucleolytic proofreading activity and/or the postreplicative mismatch repair machinery. To examine the relative contributions of these f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 147  شماره 

صفحات  -

تاریخ انتشار 2011